Cellular Signaling
with Nitric Oxide (NO)

Nitric Oxide (NO) is synthesized endogenously and plays a central role in cell-to-cell signaling.

NO is synthesized from L-arginine by the action of nitric oxide synthases (NOS) in a two-step oxidation process, with a half-life of a mere 5 seconds.

NO has the ability to cross cellular membranes under a very fast diffusion rate, and functions as one of the most primary components of human health.

The main issue related to the utilization of NO donors in humans is based on the fact that most investigators could not envision how a molecule as toxic as NO could function in a biological setting. NO functions as both a toxic and non-toxic agent, depending on its biosynthesis.

NO acts as a highly reactive, diffusible, and unstable radical under certain circumstances. Thus, researchers have sought stable NO donors with potential therapeutic value.

A stable NO donor must be capable of controlling the amount and rate of NO release in the human body in order to avoid potential toxic side-effects. The by-products of a programmed NO-reaction must possess minimal side-effects, or it cannot be used without danger of negative reactions.

The NO-delivery-dose must be sufficient to induce health benefits without triggering negative physiological effects. This elemental dose ranges from 3 grams to 20 grams per day of a NO-donor. Said doses are appropriate in cases of impotence and fertility.

A targeted-release of NO by a NO-donor requires a Low Glycemic delivery system that contains a Blind Amino Acid® Rider (BAAR).

The most stable non-drug NO-donor is FF L-Arginine bound to a BAAR, which is the substrate for nitric oxide synthase. This form of L-Arginine reverses the inhibition of nitric oxide synthase caused by arginine analogs, and is proven safe in humans long-term in doses of 3g - 20g daily.

Nitric Oxide (NO)
and its relation to:
Insulin Resistance
Metabolic Syndrome
C-Reactive Protein
Cardiovascular Risk

NITRIC OXIDE (NO) plays a significant role in reducing inflammation and platelet aggregation. When the endothelium is healthy, Nitric Oxide (NO) controls vascular tone (particularly vascular dilation), and protects the endothelium from damage due to increased pressure or flow.[1]

Two of the primary health issues on the rise globally, metabolic syndrome and insulin resistance, are related to NO. Increased C-reactive protein (CRP) levels seen in insulin resistance correlate with decreased NO levels.

CRP levels are shown to increase with each additional component of metabolic syndrome, and recent reviews have shown that elevated CRP levels correlate with increased cardiovascular risk.[2,3]

CRP is a recognized marker of vascular health and inflammation, and there is evidence that CRP is also an important inflammatory agent.[4]

Nesto R. C reactive protein, its role in inflammation, type 2 diabetes and cardiovascular disease, and the effects of insulin-sensitizing treatment with thiazolidinediones. Diabetes Med. 2004;21:810-817.
Festa A, D'Agostino R, Howard G et al. Chronic subclinical inflammation as part of the insulin resistance syndrome. The Insulin Resistance Atherosclerosis Study. Circulation. 2000;102:42-47.
Ridker PM, Rifai N, Rose L, et al. Comparison of C reactive protein and low density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med. 2002;347:1557-1565.
Nissen SE, Murat Tuzcu E, Schoenhagen P, et al, for the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) Investigators. Statin therapy, LDL cholesterol, C-reactive protein and coronary artery disease. N Engl J Med. 2005;352:29-38.



To view Research & Science on Mens
NO for Health Click Here

Understanding Nitric Oxide
Physiology in the Heart:
A Nanomedical Approach

American J Cardiology
2005 Oct 10;96(7B):13i-24i.
Epub 2005 Aug 8.

Malinski T
Department of Biochemistry, Ohio University, Athens, Ohio 45710, USA. malinski@ohio.edu

Nitric oxide (NO) is a ubiquitous signaling molecule synthesized from L-arginine and oxygen.

The process is catalyzed by NO synthase (NOS), an enzyme expressed in both constitutive (endothelial, neuronal) and inducible forms.

Uncoupling of constitutive NOS leads to overproduction of superoxide (O2-) and peroxynitrite (ONOO-), 2 potent oxidants.

Nanosensing techniques have been developed to monitor the physiology of NO in the beating heart in vivo.

These methods involve the application of nanosensors to monitor real-time dynamics of NO production in the heart as well as the dynamics of oxidative species (oxidative stress) produced in the failing heart.

Results of a recent study using nanotechnology demonstrated that African Americans have an inherent imbalance of NO, O2-, and ONOO- production in the endothelium.

The overproduction of O2- and ONOO- triggers the release of aggressive radicals and damages cardiac muscle (necrosis), which may explain why African Americans are at greater risk for developing cardiovascular diseases, such as hypertension and heart failure, and are more likely to have complications than European Americans.

Potential therapeutic strategies to prevent or ameliorate damage to the heart during cardiac events are prevention of O2- and ONOO- production, supplementation of NO (NO donors), and scavenging of O2- (antioxidants).

NO for Health

Kim, N. N., Cox, J. D., Baggio, R. F., Emig, F. A., Mistry, S. K., Harper, S. L., Speicher, D. W., Morris, S. M., Jr, Ash, D. E., Traish, A. & Christianson, D. W. (2001) Probing erectile function: S-(2-boronoethyl)-L-cysteine binds to arginase as a transition state analogue and enhances smooth muscle relaxation in human penile corpus cavernosum. Biochemistry 40:2678-2688.

Cox, J. D., Kim, N. N., Traish, A. M. & Christianson, D. W. (1999) Arginase-boronic acid complex highlights a physiological role in erectile function. Nat. Struct. Biol. 6:1043-1047.

Buga, G. M., Singh, R., Pervin, S., Rogers, N. E., Schmitz, D. A., Jenkinson, C. P., Cederbaum, S. D. & Ignarro, L. J. (1996) Arginase activity in endothelial cells: Inhibition by NG-hydroxy-L-arginine during high-output NO production. Am. J. Physiol. 271:H1988-H1997.

Mori, M & Gotoh, M. (2000) Regulation of nitric oxide production by arginine metabolic enzymes. Biochem. Bipohys. Res. Commun. 275:715-719.

Baggio, R., Emig, F. A., Christianson, D. W., Ash, D. E., Chakder, S. & Ratan, S. (1990) Biochemical and functional profile of a newly developed potent and isozyme-selective arginase inhibitor. J. Pharmacol. Exp. Ther. 290:1409-1416.

Daghigh, F., Fukuto, J. M. & Ash, D. E. (1994) Inhibition of rat liver arginase by an intermediate in NO biosynthesis, NG-hydroxy-L-arginine: Implications for the regulation of nitric oxide biosynthesis by arginase. Biochem. Biophys. Res. Commun. 202:174-180.

Boucher, J.-L., Custot, J., Vadon, S., Delaforge, M., Lepoivre, M., Tenu, J.-P., Yapo, A. & Mansuy, D. (1994) N-Omega-hydroxyl-L-arginine, an intermediate in the L-arginine to nitric oxide pathway, is a strong inhibitor of liver and macrophage arginase. Biochem. Biophys. Res. Commun. 203:1614-1621.

Iyer, R., Jenkinson, C. P., Vockley, J. G., Kern, R. M., Grody, W. W. & Cederbaum, S. (1998) The human arginases and arginase deficiency. J. Inher. Metab. Dis. 21(Suppl. 1):86-100.

Perozich, J., Hempel, J. & Morris, S. M., Jr (1998) Roles of conserved residues in the arginase family. Biochim. Biophys. Acta 1382:23-37.

Yip, M.C.M. & Knox, W. E. (1972) Function of arginase in lactating mammary gland. Biochem. J. 127:893-899.

Tabor, C. W. & Tabor, H. (1984) Polyamines. Annu. Rev. Biochem. 53:749-790.

Wu, C. W., Chi, C. W., Ho, C. K., Chien, S. K., Liu, W. Y., P’eng, F. K. & Wang, S. R. (1994) Effect of arginase on splenic killer cell activity in patients with gastric cancer. Digest. Dis. Sci. 39:1107-1112.

Leu, S. Y. & Wang, S. R. (1992) Clinical significance of arginase in colorectal cancer. Cancer 70:733-736.

Straus, B., Cepelak, I. & Festa, G. (1992) Arginase, a new marker of mammary carcinoma. Clin. Chim. Acta 210:5-12.

Morris, S. M., Jr, Bhamidipati, D. & Kepka-Lenhart, D. (1997) Human type II arginase: sequence analysis and tissue-specific expression. Gene 193:157-161.

Jenkinson, C. P., Grody, W. W. & Cederbaum, S. D. (1996) Comparative properties of arginases. Comp. Biochem. Physiol. 114B:107-132.

Buga, G. M., Wei, L. H., Bauer, P. M., Fukuto, J. M. & Ignarro, L. J. (1998) NG-Hydroxy-L-arginine and nitric oxide inhibit Caco-2 tumor cell proliferation by distinct mechanisms. Am. J. Physiol. 275:R1256-R1264.

Singh, R., Pervin, S., Karimi, A., Cederbaum, S. & Chaudhuri, G. (2000) Arginase activity in human breast cancer cell lines: N -hydroxy-L-arginine inhibits cell proliferation and induces apoptosis in MDA-MB-468 cells. Cancer Res. 60:3305-3312.

Mora, J., Tarrab, R., Martuscelli, J. & Soberon, G. (1965) Characteristics of arginase from ureotelic and non-ureotelic animals. Biochem. J. 96:588-594.

Brown, G. W., Jr (1966) Studies in comparative biochemistry and evolution. I. Avian liver arginase. Arch. Biochem. Biophys. 114:184-194.

Anderson, A. B. (1945) The activation of Jack-Bean arginase by cobalt, manganese, and iron. Biochem. J. 39:139-142.

Edlbacher, S. & Baur, H. (1958) The nature of yeast and liver arginase. Hoppe-Seyler’s Z. Physiol. Chem. 254:275-284.

Reczkowski, R. S. & Ash, D. E. (1992) EPR evidence of binuclear Mn(II) centers in rat liver arginase. J. Am. Chem. Soc. 114:10992-10994.

Khangulov, S. V., Pessiki, P. J., Barynin, V. V., Ash, D. E. & Dismukes, G. C. (1995) Determination of the metal ion separation and energies of the three lowest electronic states of dimanganese (II,II) complexes and enzymes: catalase and liver arginase. Biochemistry 34:2015-2025.

Roholt, O. A. & Greenberg, D. M. (1956) Liver Arginase. IV. Effect of pH on kinetics of manganese-activated enzyme. Arch. Biochem. Biophys. 62:454-470.

Reczkowski, R. R. (1991) Characterization of the kinetic and catalytic mechanism of rat liver arginase. Ph.D. Thesis 1991 Temple University .

Kuhn, N. J., Ward, S., Piponski, M. & Young, T. M. (1995) Purification of human hepatic arginase and its manganese (II)-dependent and pH-dependent interconversion between active and inactive forms: a possible pH-sensing function of the enzyme on the ornithine cycle. Arch. Biochem. Biophys. 320:24-34.

Kuhn, N. J., Talbot, J. & Ward, S. (1991) pH-Sensitive control of arginase by Mn(II) ions at submicromolar concentrations. Arch. Biochem. Biophys. 286:217-221.

Sossong, T. M., Jr, Khangulov, S. V., Cavalli, R. C., Soprano, D. R., Dismukes, G. C. & Ash, D. E. (1997) Catalysis on dinuclear Mn(II) centers: hydrolytic and redox activities of rat liver arginase. J. Biol. Inorg. Chem. 2:433-443.

Reczkowski, R. S. & Ash, D. E. (1994) Rat liver arginase: kinetic mechanism, alternate substrates, and inhibitors. Arch. Biochem. Biophys. 312:31-37.

Kanyo, Z. F., Scolnick, L. R., Ash, D. E. & Christianson, D. W. (1996) Structure of a unique binuclear manganese cluster in arginase. Nature 383:554-557.

Cama, E., Colleluori, D. M., Emig, F. A., Shin, H., Kim, S. W., Kim, N. N., Traish, A. M., Ash, D. E. & Christianson, D. W. (2003) Human arginase II: crystal structure and physiological role in male and female sexual arousal. Biochemistry 42:8445-8451.

Bewley, M. C., Jeffrey, P. D., Patchett, M. L., Kanyo, Z. F. & Baker, E. N. (1999) Crystal structures of Bacillus caldovelox arginase in complex with substrate and inhibitors reveal new insights into activation, inhibition and catalysis in the arginase superfamily. Structure Fold Des. 7:435-448.

Cama, E., Emig, F. A., Ash, D. E. & Christianson, D. W. (2003) Structural and functional importance of first-shell metal ligands in the binuclear manganese cluster of arginase I. Biochemistry 42:7748-7758.

Louis, C. A., Reichner, J. S., Henry, W. L., Mastrofrancesco, B., Gotoh, T., Mori, M. & Albina, J. E. (1998) Distinct arginase isoforms expressed in primary and transformed macrophages: Regulation by oxygen tension. Am. J. Physiol. 274:R775-R782.

Lavulo, L. T., Sossong, T. M., Jr, Brigham-Burke, M. R., Doyle, M. L., Cox, J. D., Christianson, D. W. & Ash, D. E. (2001) Subunit-subunit interactions in trimeric arginase. Generation of active monomers by mutation of a single amino acid. J. Biol. Chem. 276:14242-14248.

Cox, J. D., Cama, E., Colleluori, D. M., Pethe, S., Boucher, J. L., Mansuy, D., Ash, D. E. & Christianson, D. W. (2001) Mechanistic and metabolic inferences from the binding of substrate analogues and products to arginase. Biochemistry 40:2689-2701.

Scolnick, L. R., Kanyo, Z. F., Cavalli, R. C., Ash, D. E. & Christianson, D. W. (1997) Altering the binuclear manganese cluster of arginase diminishes thermostability and catalytic function. Biochemistry 36:10558-10565.

Hecker, M., Nematollahi, H., Hey, C., Busse, R. & Racke, K. (1995) Inhibition of arginase by NG-hydroxy-L-arginine in alveolar macrophages: Implications for the utilization of L-arginine for nitric oxide synthesis. FEBS Lett. 359:251-254.

Chenais, B., Yapo, A., Lepoivre, M. & Tenu, J.-P. (1993) N -Hydroxy-L-arginine, a reaction intermediate of nitric oxide biosynthesis, induces cytostasis in human and murine tumor cells. Biochem. Biophys. Res. Commun. 196:1558-1565.

Colleluori, D. M. & Ash, D. E. (2001) Classical and slow-binding inhibitors of human type II arginase. Biochemistry 40:9356-9362.

Salimuddin, , Nagasaki, A., Gotoh, T., Isobe, H. & Moti, M. (1999) Regulation of the genes for arginase isoforms and related enzymes in mouse macrophages by lipopolysaccharide. Am. J. Physiol. 277:E110-E117.

Davydov, R., Ledbetter-Rogers, A., Martasek, P., Larukhin, M., Sono, M., Dawson, J. H., Masters, B. S., and Hoffman, B. M. Biochemistry 2002; 41 10375 10381

Woodward, J. J., Martin, N. I., and Marletta, M. A. Nat. Methods 2007; 4 43 45

Flaherty, M. M., Rush, K. R., Smith, A., and Crumbliss, A. L. Biometals 2008; 21 239 248

White, K. A., and Marletta, M. A. Biochemistry 1992; 31 6627 6631

Sono, M., Roach, M. P., Coulter, E. D., and Dawson, J. H. Chem. Rev. 1996; 96 2841 2888

Vaz, A. D., Pernecky, S. J., Raner, G. M., and Coon, M. J. Proc. Natl. Acad. Sci. U.S.A. 1996; 93 4644 4648

Li, D., Kabir, M., Stuehr, D. J., Rousseau, D. L., and Yeh, S. R. J. Am. Chem. Soc. 2007; 129 6943 6951

Pufahl, R. A., Wishnok, J. S., and Marletta, M. A. Biochemistry 1995; 34 1930 1941

Clague, M. J., Wishnok, J. S., and Marletta, M. A. Biochemistry 1997; 36 14465 14473

Hurshman, A. R., Krebs, C., Edmondson, D. E., Huynh, B. H., and Marletta, M. A. Biochemistry 1999; 38 15689 15696

Nelson, D. P., and Kiesow, L. A. Anal. Biochem. 1972; 49 474 478

Childs, R. E., and Bardsley, W. G. Biochem. J. 1975;145 93 103
Hurshman, A. R., and Marletta, M. A. Biochemistry 2002; 41 3439 3456

Dunford, H. B. Xenobiotica 1995; 25 725 733

Rasmussen, C. B., Dunford, H. B., and Welinder, K. G. Biochemistry 1995; 34 4022 4029

Hurshman, A. R., Krebs, C., Edmondson, D. E., and Marletta, M. A. Biochemistry 2003; 42 13287 13303

Wei, C. C., Wang, Z. Q., Hemann, C., Hille, R., and Stuehr, D. J. J. Biol. Chem. 2003; 278 46668 46673

Fedorov, R., Ghosh, D. K., and Schlichting, I. Arch. Biochem. Biophys. 2003; 409 25 31

Li, H., Igarashi, J., Jamal, J., Yang, W., and Poulos, T. L. J. Biol. Inorg. Chem. 2006; 11 753 768

Martin, N. I., Woodward, J. J., Winter, M. B., Beeson, W. T., and Marletta, M. A. J. Am. Chem. Soc. 2007;129 12563 12570

Beaumont, E., Lambry, J. C., Wang, Z. Q., Stuehr, D. J., Martin, J. L., and Slama-Schwok, A. Biochemistry 2007; 46 13533 13540

Wang, Z. Q., Wei, C. C., Sharma, M., Pant, K., Crane, B. R., and Stuehr, D. J. J. Biol. Chem. 2004; 279 19018 19025

Ryabova, E. S., Rydberg, P., Kolberg, M., Harbitz, E., Barra, A. L., Ryde, U., Andersson, K. K., and Nordlander, E. J. Inorg. Biochem. 2005; 99 852 863

Wang, N., Zhao, X., and Lu, Y. J. Am. Chem. Soc. 2005; 127 16541 16547

Gelb, M. H., Toscano, W. A., and Sligar, S. G. Proc. Natl. Acad. Sci. U.S.A. 1982; 79 5758 5762

Low, D. W., Abedin, S., Yang, G., Winkler, J. R., and Gray, H. B. Inorg. Chem. 1998; 37 1841 1843

Dawson, J. H., Holm, R. H., Trudell, J. R., Barth, G., Linder, R. E., Bunnenberg, E., Djerassi, C., and Tang, S. C. J. Am. Chem. Soc. 1976; 98 3707 3709

Modi, S., and Behere, D. V. Biometals 1997; 10 23 26

Copyright © 2008-2010

Copyright © 2008-2011 ArgMatrix®